US DEPARTMENT OF ENERGY SOLID STATE LIGHTING 2008 MULTI-YEAR PLAN TECHNOLOGY R&D

Fred Welsh Radcliffe Advisors

- By 2025, DOE's goal is to reach technology capability for a net-zero energy building ("ZEB" and a net-zero home, "ZEH")
- □ Lighting contributes 25% of energy consumption in commercial buildings and 12% in residential
- Saving half the lighting energy the SSL goal would contribute substantially to ZEB and ZEH

- The MYPP spells out how to reach the goal
 - Chapter 4 is the Technology R&D Plan
- Performance targets (and status) in four flavors:
 - Conversion efficiencies (independent of spectrum)
 - Overarching device targets for efficacy, lifetime, cost
 - Luminaire targets
 - Detailed and specific subtask metrics and targets
- Many participate in developing the Plan, including the NGLIA, this workshop, and DOE managers

- LED efficacies far-surpassed our projections
- Several high quality LED luminaires appeared in the market (and a few not so good, too)
- Prices more attractive (apparently)
- OLED efficacies improved exponentially

- Higher near-term efficacy targets for LEDs
- New emphasis on luminaire performance
- New milestone for LEDs
- Some redirection of resources (task priorities)
- □ Continue OLED track for efficacy
- Additional cost and reliability effort for OLEDs

- □ Bottom line device efficiency targets:
 - □ Color mixing LED device 66% target (~27% in 2007, up from 16% in 2006)
 - □ Phosphor LED device 48% target (~25% in 2007 up from17%)
 - □ OLED device 69% target (~11% in 2007 up from 9%)
- □ Reflects energy savings, but...
- Conversion alone does not alone make for useful light (measured by efficacy)

- Efficacy depends on
 - Correlated color temperature (CCT)
 - Color quality (CRI)
 - Conversion efficiency
- Estimated maximum practical values assume
 - a "good" spectrum
 - □ about 50% conversion
- These are rough asymptotes for LEDs

Maximum LED Efficacy (lumens/ Watt)			
CCT 75	CRI	90 CRI	
3000K	182	162	
4100K	220	193	
6500K	228	186	

LED Device Performance Track

Metric 2007		2010	2012	2015
Efficacy- Lab (lm/W)	120	160	176	200
Efficacy- Commercial Cool White (Im/W)	84	147	164	188
Efficacy- Commercial Warm White (lm/W)	54	117	134	158
OEM Device Price- Product (\$/klm)	25	10	5	2

OLED Efficacy

Metric	2007	2009	2012	2015
Efficacy- Lab (lm/W)	44	76	150	150
Efficacy- Commercial (Im/W)	N/A	34	76	150
OEM Device Price- (\$/klm)	N/A	72	27	10
OEM Device Price- (\$/m²)	N/A	216	80	30
Device Life- Commercial Product (1000 hours)	N/A	11	25	40

- Device costs are still a barrier to deployment
- But costs are falling rapidly
 - Chart compares LED devices to conventional lamps (a bit overly optimistic but instructive)
 - LEDs should approach cost parity within planning time period

Luminaire Targets

13

Efficacy	LED		OLED	
(lm/W)	2007	2015	2009	2015
Device	84	188	34	150
Luminaire	47	161	27	129

Priority		Subtask		
1	1.3.2 Encapsulants and packaging materials			
Higher		1.4.x Inorganic growth, fabrication process, mfg. research		
Lower	1.1.3 Reliability and defect physics			
	1.1.1 Large area substrates			
	1.2.2 Strategies for improved light extraction			

Priority Changes: LED Product Development

1.5

Priority	Subtask	
Higher 1	2.3.3 Power Electronics Development	
Lower	NONE	

Priority Changes: OLED Core

Priority Subtask	
Higher 1	3.3.2 Low-cost encapsulation and packaging technology
Lower	3.1.3 Improved contact materials and surface modification

Priority Changes: OLED Product Development

17

Priority	Subtask
Higher 1	NONE
Lower	NONE

Milestone	Year	Target
Milestone 1	FY08	80 lm/W, < \$25/klm, 50,000 hrs device
Milestone 2	FY10	> 140 lm/W cool white device; > 90 lm/W warm white device
Milestone 3	FY12	126 lm/W luminaire that emits ~1000 lumens
Milestone 4	FY15	< \$2/klm device

Milestone	Year	Target
Milestone 1	FY08	25 lm/W, < \$100/klm, 5,000 hrs device
Milestone 2	FY10	<\$70/klm device cost
Milestone 3	FY15	> 100 lumen/Watt device

Critical Path Analysis

- Critical path analysis
 - Helps focus resources
 - Easily updated from results
 - A work in progress
- Critical tasks for LEDs
 - High efficiency emitters
 - Good packaging materials and design
 - Thermal issues/luminaire integration
- OLED chart is in the works

LED Milestone #1 has been passed - on time

Conclusion: What We Hope to See in 2008

- \square High-power LED device on the market delivering > 100 Im/W
- A luminaire product offering that provides 1000 lumens at 65 lm/W
- A white OLED lighting product on the market with reasonable efficiency, cost and life
- □ LED device costs below \$10/klm
- □ And more!

- Thanks to the NGLIA participants...
 - Joseph Shiang, GE Global Research
 - Anil Duggal, General Electric
 - Dietrich Bertram, Philips
 - Jianzhong Jiao, Osram Opto Semiconductors
 - Steffan Zahn, Air Products and Chemicals
 - Ann Norris, Dow Corning Corporation
 - Angela Hohl-AbiChedid, Osram Sylvania
 - George Craford, Philips Lumileds
 - Kevin Dowling, Philips Solid-State Lighting Solutions
 - Paul Phillips, LSI Industries
 - Ralph Tuttle, Cree, Inc.
 - Anant Setlur, GE Global Research
 - Srinath Aanegola, GE Lumination

Credits

- And to the team from Navigant Consulting...
 - Mike Scholand
 - Diana Burk
 - Mahima Gupta
 - Brinda Thomas
- □ Also, our other consultants....
 - Paul Burrows, PNNL
 - Morgan Pattison, Solid State Lighting Services, Inc.
- And to you, for your participation and feedback

Please email comments to <u>fredwelsh@verizon.net</u>